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MODAL DENSITY FUNCTION AND NUMBER OF

PROPAGATING MODES IN DUCTS

by E. J. Rice

Lewis Research Center

ABSTRACT

Often raised questions in duct sound propagation studies involve the
total number of propagating modes, the number of propagating radial
modes for a particular spinning lobe number, and the number of modes
possible between two given values of cutoff ratio or eigenvalue. These
questions can be answered approximately by using the modal distribution
function which is the integral of the modal density function for ducts in a
manner similar to that previously published for architecturai. acoustics.
The modal density function: are derived for rectangular and circular
ducts with a uniform steady flow. Results from this continuous theory
are compared to the actual (discrete) modal distributions.
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INTRODUCTION

The question of the number of propagating modes within a small

range of mode cut-off ratio has been raised in references 1 and 2. The
population density of modes has been shown to be greatest near cut-off
and least for the well propagating modes. It has been shown in references

`l.
	 1 and 2 that modes of nearly the same cut-off ratio behave nearly the same

in a sound absorbing duct as well as in the way they propagate to the far
field outside of the duct. Thus it has been proposed that, rather than
handling all of the propagating modes individually, they can be grouped
into several cut-off ratio ranges. It is important to know the modal den-
sity function to estimate acoustic power distribution in the extension of the
above mentioned studies.
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A natural companion of the modal density function is the number of
propagating modes possible in a duct. In the more limited case of rotor-
stator interaction noise where the mode lobe numbers (m) are restricted

(ref, 3) it is of interest to know the number of propagating radial modes

for a particular mode lobe number. It is of course possible to enumerate

the number of propagating modes by counting them with the use of eigen-

value tables as done in reference 4, but it is much more convenient to

have approximate equations for this purpose particularly when large num-

bers of modes are involved.

Equations for the number and modal density of the propagating modes

in circular and rectangular ducts are developed in this paper. The basis

for the equations lies in the very analogous problem of normal modes in

rooms used in architectural acoustics (refs. 5, 6 are examples).

SYMBOLS
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area of the axial modes in the j, m vector plane, see eq. (27)

area of the oblique modes in the j,m vector plane, see eq. (29)

speed of sound, m/sec

modal density function, see eqs. (40) and (42)

circular duct diameter, m

function of 77, ^, and M, see eq. (26)

limiting value of F at a particular value of cut-off ratio

frequency, Hz

rectangular duct height, m

V -1

integer index, see eq. (25)	 j

Bessel function of first kind of order m
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N total number of modes

Nax number of modes including j=0 and m=0 modes only

No number of modes with m=0

Nay number of modes with a particular value of m

N * number of modes, sum of No and N+

N+ number of spinning modes in one transverse direction

M uniform steady flow Mach number

m spinning mode lobe number

m 0 maximum value of m for which first radial mode will propagate

P acoustic pressure, N/m2

R ratio of large to small dimensions in a rectangular duct

r radial coordinate, m

rH hub radius in an annulus, m

xW outer wall radius, m

t time, sec

W rectangular duct width, m

x axial coordinate, m

y transverse coordinate between rectangular duct walls, in

z transverse coordinate, m

a eigenvalue

ao limiting value of the eigenvalue for which propagation occurs

R eigenvalue

b annulus hub-tip ratio, rH/rW

7 frequency parameter, fD/c 	 or fH/c

0 angular coordinate, radians
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mode cu.t-off ratio, eq. (5) for cylindrical ducts, eq. (24) for

thin rectangular. ducts

T	 propagation coefficient, see eqs. (1), (2), (20) 0 (21), (35)

TO function of m and a 0 , see eq. (8)

Co circular frequency, rad/sec

NUMBED: OF PROPAGATING MODES

Expressions for the number of propagating modes will be derived in
this section. Both cir cular and rectangular ducts will be considered.
These equations will be used in the next section to derive the modal den-
sity functions.

;^	 3

Circular Ducts
`a	

1

The expression for the acoustic pressure of a spinning mode in a
circular duct is given by

(1)

(2)

r

r

z2

i cot -Jm 0-1.WTx

P = J' ,g ar % e	c
m

A

\r Wi

where

-M	 1 (1 -M2)	
2

^

1 _M2
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^1 = fD	 (3) , l
C

and M is the Mach number of the uniform steady flow in the duct.	 The
condition that the radial particle velocity must vanish at the outer hard
wall determines the eigenvalues from

Jm(«) = 0	 (4)

The problem of modal enumeration amounts to counting the number of solu-
tions to equation (4) such that a is less than some	 a0 .	 The quantity ao
will be interpreted here as the limiting value of the eigenvalue for which
sound propagation can occur.	 This idea of propagation involves the cut-off
ratio defined as i

{I ^ J

-
777 	

(5)
1 _MI

I When equation (5) is used in equation (2), it is seen that at 	 = 1 the radical
^ f in equation (2) vanishes and this will be termed cut-off.	 For	 < 1, the

propagation coefficient 7 will be complex and damping occurs in the pres-
sure (eq. (1)).	 Whether a mode is propagating or not depends upon the mode
eigenvalue (a) as well as the duct diameter (D), sound frequency (f) and the
uniform steady flow Mach number (M). 	 Thus, for the purposes of this '`	 j
development,

E
0	 2

Vl `M
F

The lobe number m 0 is the largest value of m for which the first root of
equation (4) is less than 	 ap.

The properties of the Bessel function eigenvalues will not be considered
in detail here.	 For more detail, reference 5 is suggested and the following

^I

eigenvalue properties were obtained from this reference. 	 The properties of I.
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the eigenvalues are such that for a given lobe number m, the number of
modes with eigenvalue a less than a0 can be approximated by,	 I

Nm (a0) _ «0 (sin To - TO cos TO ) + 4	 (7)
7r 

where

cos TO = m (8)aO

Equation (7) is very good for large values of a 0 and is fairly adequate
even down to aO of ten.. 	 The total number of modes with a less than
a0 is obtained by summing over equation (7) from m = 0 to m 0 (see
ref. 5).	 The result is,

a2
^

N* (a	 0+1 1 +1O	 a 0
C2

(9)8	 2	
?T

(Note; there is an error in reference (5), eq. (15) in the last term). 	 Equa-
tion (9) contains the axisymmetric modes (m = 0) and the spinning modes in i
one transverse direction only. 	 The number of axisymmetric modes is
(eq,	 (7), m = 0),

NO (aO) ^ a^ (10)
.I

1 V

The number of spinning modes in one transverse direction is thus,

2

Ni a)=N^
;
(a) -N (a )= -+1 

1	
1(_0	 0	 0	 0

C28	 2	 ^) 110
(11)
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Finally the total number of modes in the positive axial direction is

a2 a

	

N ( aO ) = 2N+(a0) + NO (aO) _ O + 0	 (12)
4	 2

The number of propagating modes is now related to the duct size,
steady flow Mach number and sound frequency by using equation (6) to
yield,

	

No =	 ?7 	 (13)
1 __MI

n^ 
Cl - 

1

	

22	 \	 J
N+ = rr 77 + 	

1

2 n	 (14)
8(1 - M2) 2 1 - M2

and

2 2
N =	 n '7	 +	 lr??	 (15)

4(1 - M 2) 2I,—_  M2)

The number of propagating modes is seen to depend only upon the fre-
quency parameter 71 and the steady flow Mach number M. The number of
modes (spinning only, in. one direction) have been counted in reference 4 for
M = 0 2 77 = 30.11 with a reported result of N} = 1126. Equation (14) yields
N+ = 1127 showing excellent agreement for large values of 77. For small
values of 77 and for M = 0, figure 1 shows a comparison between an exact
mode count and N* from equation (9) (using eq. (6) with M = 0). The

i agreement is seen to be quite good. Note that the equations do not include

r
the plane wave mode since when 77 = 0 then N = 0). If this mode were also
included (add unity to equations) the agreement between calculated and actual
mode counts would be improved at low values of rya

i
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A more general form of equations (13) to (15) can be developed for an
arbitrary value of the cut-off ratio rather than just at cut-off Q = 1). This
is done by using equation (5) rather than (6) for a or a0 . The results are,	

r	 ^^

Now =	 77

^^ 1 -M2

2 2	 1\	 J
n? (1 - 1`

N+(o =	
rr 77	 +	 2 ir

81 2 (1 - M2 ) 2 1 - M2

and

2 2

	

45 2 (1 _ M 2 ) 2	 1_ M2	 +'

These give the number of propagating modes with cut-off ratios from infinity'
to the selected value of t. Equations (13) to (15) are thus special cases of
equations (16) to (18) with 	 = 1.

The number of propagating modes with a particular lobe number (m),
frequency parameter (77), and Mach number (M) may be of interest in a cir-
cular duct. This number can be calculated directly from equation (7) using
equations (8) and (6). An approximation to equation (7) can also be derived
by using a series expansion around m = 0. The resulting approximation is

2
Nm (in ,77M)^	 n	 +1_m+ m 1-M	 (19)

1 - M2 4 2	 21r277

Sample calculations using equations (7) and (19) are compared to exact
counts in table I for 77 = 15 and M = 0.

REPRODUCIBILITY OF THE
O1tIGINA.L PAGE IS POOL.
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TABLE I. - COMPARISON OF EXACT AND CALCULATED Nm

in

counted
Nm

(eq.	 (7))
Nm

(eq. (19))

0 15 15.25 15.25
5 13 12. 83 12. 83

10 11 10.59 10.59
20 7 0.62 6.60

30 3 3.41 3.29
35 2 2.12 1.89
40 1 1.09 0.65

The agreement using either equation is seen to be quite good. In actual
use the calculated N. would probably be truncated or rounded off to
obtain an integer.

Thin Rectangular Duct

The thin rectangular duct is of interest since it approximates an un-
wrapped thin annular duct (ref. 7) often used in noise suppressors. The
boundary condition in the unterminated direction is that the pressure must
repeat over a distance of one annulus circumference. The acoustic pres-
sure solution is

iWt-imZ iCJTX

P -Cos '2
 aye	

r 
w 

c

H

for symmetric modes, with sin (2 ay/H) replacing the cosine for the asym-
metric modes. The axial propagation coefficient is	 t'

C'

i

a.1 ^':
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T(iTC71 	 N rTj
-M + 1 - (1-M2) + 	 S1	 ^ q

7 = -	 (21)
1-M2

where now

71 = fH
	 (22)	 1'

c

and the hub-tip ratio 6 is,
II

r 
6 = —	 (23)

I'	 r Wi
Note that as in the previous section traveling waves in the positive z direc-

i(	 tion only are included.
The cut-off ratio is defined as,

_ 7T^=(24)m
1 - M2 ) a2 + m(1 - b) 1^^ ^ C 2 Jj

((!`	 The hardwall condition at y = tH/2 requires that

« - )2 7 - 0, 1 1 2, 3 1	(25)
a

which includes the eigenvalues for both the sine and cosine functions. Equa-
tion (24) can be rearranged (and using equation (25)) to yield,

f'	
2

F2 =

	

	 2T7	

2	
= ] 2 +I in(- S)^ 2	 (26)

1-M l

.	
k
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The enumeration of the modes reduces to finding the number of j and m

values such that the value of F calculated from equation (26) is less than

or equal to a limiting value F0 . This is the same as counting the modes

with cut-off ratios greater or equal to a particular value of t. Due to the

even spacing of the eigenvalues it is easiest to use the vector plane approach

of reference 6. Equation (26) may be viewed as a vector equation in the j

- !	 and m plane and is pictured as such in figure 2. The lr ration of each mode

is shown by a dot and has associated with it a unit area of (1 - 6)/ .ff. The

term axial modes refer to those along both the j = 0 and m = 0 axes while

the oblique modes are all of the remaining modes. The idea is to calculate

the area associated with each type of mode and divide this by the unit area to

obtain the number of modes. The area associated with the axial modes is

	

1.n J
	

(27)

that part being associated with m = 0 being pictured in figure 2. The num-

ber of axial modes is thus,

N = F 1 + n	 (28)
_ax	 0 	 (1 - b)]

The area for the oblique modes is

A	
- trF0 _ F0 [1± (1 - d)l 	 (29)OB 4	 2	 n

where half of the area associated with the axial modes has been removed from
the quarter circle since this area has already been accounted for with the axial
modes. The final result is

J
i

r'^
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X 2 (1 - M2 )(1 - S)	 1 -M	 (1 ' S)

which represents the in 0 modes and the transverse modes in one direc-
tion only. The number of modes associated. with m = 0 (use eq. (26)) is,

Now =	
277	

(31)

with spinning modes in one directiun,

N+Q) _---- r2p2	
+ ^—L	 -	 (32)

X2(1 - M 2)(1 - S)	 1 M2 (1 " 6) J

and with. the total. number of modes being
r

NQ) _ -- 2-	 7M + 	 (33)

t;' 1°M2 (1~S)	 1-PJf2 JJ
which represents the m = 0 modes and the modes spinning in the plus and	 =
minus transverse directions, The number of propagating modes of each
type can now be determined by letting the out-off ratio t be unity. Figure 3

9shows a comparison of N
k: 

(eq. (30)) with an actual count ofof. modes using
i

equation (25). No attempt has been made to reproduce the discrete steps of
the actual count (as in. fig. 1). The agreement is seen to be quite good and.
thus the continuous equ.aiions can be used to approximate the actual discrete
number of modes. Included for comparison is a mode count (using tables of
ref. 8) in an. annulus with hub-Lip ratio (S) of 2{3. The actual annulus is seen
to have somewhat fewer modes than its approximating rectangle but the agree- :;
ment should improve for higher S.

The number of modes propagating with a particular lobe number is quite
simple to obtain with a thin rectangular duct. Solve for j in equation (26) 	

f

(with t = 1) and add unity (to account; for the j = 0 mode). The result is,

f
G
1
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2	 2
Nm(m2711M) 	 lm(l b)l + 1	 (34)

V(l _ M 2 ) 	rrJ

Note that equations (30), (31), and (33) do not contain the plane wave mode.
If the plane wave is desired in the count, unity should be added to these
equations.

I

Rectangular Duct

Consider a rectangular duct with smaller dimension H and larger di-
mension W. The pressure for the symmetric modes is given by

iWtmiwTX

P = cos '2U' cos 2(3z a	
c	

(35)
H W

with sine functions used for the asymmetrical modes. A procedure very
similar to that in the previous section will yield,

NQ) _ 
— rrR772	 + 77(R, + 1)

	

(36)
X2(1 - M2 )	 'V1 - M2

with
	

n

M 
	

(37)

and

q
a

R,=W>_1

ii

f

Et	 ^

(38)

f!
r
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Note the frequency parameter is based upon the smaller dimension here.
In this case no arguments involving plus or minus direction transverse
waves need be made since the cosine or sine function encompass both wave
directions. Again with ^ = 1 in equation (34) the total number of prop-
agating modes can be estimated.

Note that all of the mode counting equations previously presented con-
sider only the modes propagating in the plux -x direction. If reflections
off of an end termination are considered, the number of modes would be
doubled,

s

MODAL DENSITY FUNCTION

The modal density function for all modes in a circular duct will be
developed here. Similar procedures can be used for the axisymmetric or
the spinning modes or for the other duct shapes if desired.

Differentiation of equation (18) yields

dN (t) _	 7T2772	 1 + 1 - M2 
t]	 (39)

dy	 2^ 3 ( 1 - M )

	

2	 nil

where the sign has been changed such that integration from ^ to 00 will
recover the original mode number equation. When equation (39) is normal-
ized by the total number of propagating modes (eq. (15)) the modal density
function is obtained as

1 _ M2

__ 1O 
_ 2 1 +

00,

	
n^	 J

	

_	 (40)
N 

d 3 1+ 2 1 -M2

C	 7r
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The second term in the denominator is usually small for aircraft inlet appli-

cations since usually 10 < 77 < 30. The second term in the numerator can

dominate only if

>	 W17

1 __M1

which is a very large cut-off ratio (far from cut-off (^. = 1) which is of most
interest for acoustic power considerations). The modal density function can
thus be well approximated by

Oc _3	 (42)

The same equation can be used for rectangular ducts provided that

<^^2
— r̂ 	 (43)
Y 1 - M2

for thin rectangular ducts and

(41)

J

3

ji

<Zr^R	 (44)
1 _ M2 (R + 1)

for rectangular ducts. Some care should be exercised in using equation (42)
for rectangular ducts. In some applications conditions (43) or (44) may not
be realized. In aircraft applications where annular ducts are used (ree-

tangular intended to simulate annulus) the frequency parameter (77) is usually
around one or, two representing a limiting cut-off value beyond the range of
interest.

The modal density is seen to be greatest near cut-off Q = 1) and dim-
inishes rapidly as cut-off ratio is increased. This quantifies the observa-
tion of this fact which was stated in reference (1). It is also interesting to
note that the modal density function (in its approximate form) depends only
upon the cut-off ratio.

i
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CONCLUDING REMARKS

An approximate modal density function has been derived which is valid
for both circular and rectangular ducts. This function represents the frac-
tion of the total modal population which is within a small cut-off ratio range.
The modal density function was found to depend only upon cut-off ratio.
This coincides with the approximate dependence upon cut-off ratio (refs, 1
and 2) of optimum wall impedance, maximum possible sound attenuation,
and far field sound radiation. The density function is required to extend an
approximate liner design technique based upon the unifying influence of cut-
off ratio (ref, 2).

Approximate equations were also presented to estimate the number of
propagating modes in circular and rectangular ducts, All of the above are
approximate in the sense that continuous equations are presented to repre-
sent an inherently discrete phenomenon. The approximation is good pro-
vided a sufficiently large number of modes can exist. In cases where only
a few modes exist due to low frequency, small ducts, or restricted noise
sources (such as some cases of rotor-stator interaction) then the sound
propagation should be handled on an individual mode basis.
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